Nonlinear perturbation of a high-order exceptional point: skin discrete breathers and the hierarchical power-law scaling
نویسندگان
چکیده
Abstract We study the nonlinear perturbation of a high-order exceptional point (EP) order equal to system site number $L$ in Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity. find class discrete breathers that aggregate one boundary, which we dubbed as $skin breathers$ (SDBs). The spectrum these SDBs shows hierarchical power-law scaling near EP. Specifically, response energy is given by $E_m\propto \Gamma^{\alpha_{m}}$, where $\alpha_m=3^{m-1}$ power $m=1,\cdots,L$ labeling bands. This sharp contrast $L$th root linear general. These decay double-exponential manner, unlike edge states or skin modes systems, exponentially. Furthermore, can survive over full range nonlinearity strength are continuously connected self-trapped limit large They also stable, confirmed defined fidelity an adiabatic evolution from stability analysis. As nonreciprocal models may be experimentally realized various platforms, such classical platform optical waveguides, naturally present, quantum lattices Bose-Einstein condensates, our analytical results inspire further exploration interplay between non-Hermiticity, particularly on EPs, benchmark relevant simulations.
منابع مشابه
the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL
The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...
متن کاملHigh order perturbation study of the frustrated quantum Ising chain
In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...
متن کاملBreathers for the Discrete Nonlinear Schrödinger Equation with Nonlinear Hopping
We discuss the existence of breathers and lower bounds on their power, in nonlinear Schrödinger lattices with nonlinear hopping. Our methods extend from a simple variational approach to fixed-point arguments, deriving lower bounds for the power which can serve as a threshold for the existence of breather solutions. Qualitatively, the theoretical results justify non-existence of breathers below ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Physics B
سال: 2023
ISSN: ['2058-3834', '1674-1056']
DOI: https://doi.org/10.1088/1674-1056/accb47